The IBHS Hail Field Study conducts annual field research operations dedicated to studying hailstorms. The program goals are:
- To provide data to guide and improve laboratory hail testing.
- To map hailswaths to help verify and improve radar-based hail detection.
- To determine the environmental conditions that influence hail strength, hailstone concentrations, and ultimately the impact to homes & businesses.
- To evaluate regional differences in hailstone and hailstorm characteristics.
Field Research Insights
2024
The 2024 IBHS Hail Field Study traveled the Great Plains during a two-week nomadic deployment. Over a record 10 observation days, three teams worked together to deploy disdrometers and shingle panels in the path of severe thunderstorms. Hailstones were collected, measured, weighed, and crushed to further supplement the IBHS hailstone database. Teams also scanned and cross-sectioned giant hailstones that fell near Morton, Texas to observe and document the internal ice structure.
For a second year the IBHS record hail quick response team partnered with the National Weather Service, using machine vision analysis to assist in the investigation of a potential new Texas hailstone record in Vigo Park, TX. The hail damage observed on the shingle panels will be assessed and compared with the kinetic energy data collected from the disdrometers to correlate kinetic energy flux to the damage. New this year, the team deployed a prototype omni-directional disdrometer – a wind-driven hail sensor. This one-of-a-kind 6-axis force transducer will enable us to measure the impact angle of hail. Understanding the impact angle of hail will enable laboratory testing to explore the resilience of materials like siding and windows to hail. All of the data collected on the trip will be used to further sharpen IBHS ability to simulate real-world events inside the hail lab and the test chamber. IBHS is also grateful to have had research collaborators from Penn State University and Verisk join the IBHS teams on the deployment.
2023
The IBHS Hail Field Study deployed roof panels alongside disdrometers for the first time to observe damage from an instrumented storm. During a two-week nomadic deployment, teams also worked to observe hail swaths to understand the size distribution of hailstones within a storm and to crush hailstones to expand our database of hailstone strengths. Research collaborators from Penn State University joined IBHS in the field to collect sounding data on the environments of these hailstorms.
The team also 3D scanned a giant 5.23-inch hailstone that fell in Mansfield, Texas on June 12.
2022
Two field missions took the IBHS Hail Study into the southern Plains and across the southeast. The teams deployed the first two-road disdrometer array capturing the evolution of hail production in a tornadic supercell near Crowell, Texas.
The Quick Response Team documented a giant 5.67-inch hailstone that fell in Salado, Texas on April 12. The team went international to support Western University’s Northern Hail Project and 3D scan Canada’s new record setting 4.84-inch hailstone that fell near Markerville, Alberta on August 1.
2021
After 693 days and completed vaccine protocols, the IBHS Hail Field Study returned to operations, bringing along impact disdrometers and hail crushers, and working to understand the environmental characteristics influencing hailstone strength. The team also 3D-scanned a record 6.4-inch hailstone in Hondo, Texas, that was saved by a homeowner following an April 28 hailstorm near San Antonio.
The team plans to return to the field in June for a second mission in coordination with a pilot National Center for Atmospheric Research (NCAR) project testing new technologies to observe hail with ground truth verification from IBHS.
One day in one minute with the IBHS Hail Field Team – Tuesday, May 11 near Dryden, Texas.
2019
Three field team deployments continued the push to better understand hail size distributions and continued IBHS’s contribution to radar hail detection research as we mapped the details of hailswaths. Teams collected 9 quality datasets.
The Record Hail Quick Response Team 3D scanned Colorado’s largest recorded hail stone and 6 giant hailstones in Arkansas. The Colorado stone fell August 13 and measured 4.83” in diameter.
2018
The field team conducted 1 mission to the Central Plains and successfully collected 3 high quality hailswath data sets.
Following a severe storm on March 19 in Cullman, Alabama, IBHS established the Record Hail Quick Response Team. IBHS provided support to the National Weather Service and the Southeast Regional Climate Center to document what is believed to be the largest hailstone ever to have fallen in Alabama, and one of the three largest ever documented east of the Mississippi River. At 5⅜ inches (13.665 cm) at its largest measurement and approximately 0.6 pounds, its total volume was approximately 20 cubic inches (about the volume of a soda can).
2017
2017 marked a shift in the IBHS hail field research program from individual hailstones to hailstorms and their hailswaths. This was the first year the full fleet of hail impact disdrometers were used in the field. IBHS maintains the only deployable instrument network dedicated to measuring hail impacts in the world. The team collected 5 quality swath cases. Using 3D Laser Scanning Technology to Create Digital Models of Hailstones (July 2017 Bulletin).
2016
The field team debuted a new 3D scanner to collect digital models of natural hailstones. These models have been used to
- Revolutionize our understanding of hailstone aerodynamics leading to new insights into how fast hail falls and the energy it has when it impacts our built environment
- Preserve record setting hailstones for future research
- Improve our understanding of how radar “sees” hailstones compared to other precipitation types
- Help educate members, students, and other scientists on hailstone shapes
IBHS initiated a new collaboration with the University of Oklahoma using mobile Doppler radars marking the first-time mobile radar data were collected simultaneously over hail impact disdrometer measurements.
2015
The field team deployed its first set of four of impact disdrometers to measure the hail size distribution and impact energy of falling hailstones. IBHS published the first peer-reviewed paper on hailstone strength setting the foundation for what would become the IBHS Hail Impact Test standard in 2019. Published: Evaluating Hail Damage Using Property Insurance Claims Data.
2014
The field team collected data on 1,636 hailstones to build up the database of hailstones to establish hail lab testing capabilities and field tested two impact disdrometer prototypes. In collaboration with the National Center for Atmospheric Research (NCAR), IBHS modernized hail aerodynamic theory leading to simple hail diameter to impact energy relationships. IBHS initiated an ongoing collaboration with Penn State University to allow students to participate in the field study missions.
2013
The field team collected data on 658 hailstones, initiated research collaboration with State Farm Insurance, and used hail strength data to improve impact tests at the IBHS Research Center. Field study data was used to recreate a full-scale indoor hailstorm at the Research Center.
2012
The pilot study was the first known attempt to measure the hardness or compressive strength of natural hailstones. The field team collected data on 239 hailstones using a compressive force device developed by IBHS.
3 Comments